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Large sparse linear systems occur in many scientific and 
engineering applications encountered in military and civilian 
domains.  Such systems are typically solved using either 
iterative or direct methods.  We are developing parallel 
formulations of computationally intensive algorithms that underly 
these methods. 

Direct methods for solving sparse linear systems are important 
because of their generality and robustness.  For linear systems 
arising in certain applications, such as linear programming and 
some structural engineering applications, they are the only 
feasible methods.  Although highly parallel formulations of dense 
matrix factorization are well known, it has been a challenge to 
implement efficient sparse linear system solvers using direct 
methods, even on moderately parallel computers. 
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Matrix Name Order NonZeros Description 
BCSSTK30(B30) 

BRACK2 (BRCK) 
CANT (CANT) 
COPTER2 (COPT) 
CUBE35 (C35) 
CYLINDER93(CY93 
4ELT (4ELT) 
INPROl (INPR) 
MAROS-R7 (MR7) 
NUG15 (NG15) 
ROTOR (ROTR) 
SHELL93 (SHEL) 
TROLL (TROLL) 

28294 1007284 
35588 572914 

44609 985046 

62631 366559 
54195 1960797 
55476 352238 
42875 124950 
)45594 1786726 
15606 45878 
46949 1117809 
3136 330472 
6330 186075 

99617 662431 
181200 2313765 
213453 5885829 

Off-shore generator platform 
Stiffness matrix of an 
automobile component 
Stiffness matrix of an 
automobile chassis 
Finite element mesh 
Finite element mesh (3D) 
Helicopter rotor mesh 
35 ' 35 ' 35 3D mesh 
Finite element mesh (3D) 
NASA Airfoil (2D) 
Finite element mesh (3D) 
Linear programming problem 
Quadratic assignment problem 
Finite element mesh (3D) 
Finite element mesh (3D) 
Finite element mesh (3D) 

ur> 



WAVE (WAVE) 156317 1059331    Finite element mesh (3D) 

Table 1. Description of test matrices used in our 
experiments. 

It is a well known fact that dense matrix factorization scales 
well and can be implemented efficiently on parallel computers. 
We have shown that our parallel sparse factorization algorithm is 
asymptotically as scalable as the best dense matrix factorization 
algorithms on a variety of parallel architectures for a wide 
class of problems that include two and three-dimensional finite 
element problems.  This algorithm incurs less communication 
overhead than any previously known parallel formulation of sparse 
matrix factorization, and therefore, is suitable for workstation 
clusters that tend to be connected via relatively low-bandwidth 
and high-latency channels relative to the traditional MPP 
platforms.  We have successfully implemented this algorithm for 
Cholesky factorization on a variety of parallel computers, such 
as nCUBE2, CM-5, IBM SP-1 and SP-2, and the Cray T3D.  The 
implementation on the T3D delivers up to 20 GFlops on 1024 
processors for medium-size structural engineering and linear 
programming problems.  Although our current implementations work 
for Cholesky factorization, the algorithm can be adapted for 
solving sparse linear least squares problems and for Gaussian 
elimination of diagonally dominant matrices that are almost 
symmetric in structure.  Figure 1 shows the performance of our 
scheme on the matrices given in Table 1. 
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Figure 1. The performance of the parallel sparse multifrontal 
algorithm for various problems on the Cray T3D. 

Fast and accurate graph partitioning algorithms are needed for 
the solution of sparse system of linear equations Ax = b  on a 
parallel computer.  In the case of direct solvers, a graph 
partitioning algorithm can be used to reorder the matrix so that 
the amount of fill is minimized, and the concurrency that can be 



exploited during parallel factorization is maximized.  In the 
case of parallel iterative solvers, the graph corresponding to 
matrix A needs to be partitioned into p parts so that the 
number of edges with vertices on different partitions is 
minimized.  Many heuristic algorithms are known for finding good 
partitions of a graph. Algorithms that provide good partitions of 
the graph (e.g., spectral methods) tend to be very slow, 
especially for large graphs.  Faster algorithms tend to 
compromise on the quality of the partition. In the context 
of direct methods, good sequential partitioning methods can take 
even more time than the factorization step running on a parallel 
computer, and cheaper methods result in a high degree of fill in 
the matrix, causing overall factorization time to jump up by a 
large factor. 

Our Murtilevelvs Multilevel Spectral Bisection (MSB) 
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Figure 2. The size of the edge-cut of multilevel graph 
partitioning relative to spectral bisection. Bars below 1 
indicate that the multilevel graph partitioning scheme produces 
better partitions. 

We have recently developed a multilevel graph partitioning scheme 
that consistently outperforms the spectral partitioning schemes 
in terms of cut size and is substantially faster.  We also used 
our graph partitioning scheme to compute fill reducing orderings 
for sparse matrices.  Surprisingly, our scheme substantially 
outperforms the multiple minimum degree algorithm (MMD), which is 
the most commonly used method for computing fill reducing 
orderings of a sparse matrix. Figure 2 shows the performance of 
our multilevel scheme relative to the multilevel spectral 
bisection (MSB) on graphs corresponding to some of the matrices 
from Table 1.  As the figure shows, the edge-cut produced by our 
multilevel scheme is consistently better than that produced by 
the MSB scheme. 
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Figure 3. The number of operations required by spectral nested 
dissection and multiple minimum degree relative to multilevel 
nested dissection. Bars below 1 indicate that the multilevel 
scheme produces worse orderings. 

Figure 3 shows the quality of the fill-reducing ordering produced 
by  our multilevel scheme relative to the MMD scheme.  From 
Figure 3 we see that our multilevel scheme does consistently 
better as the size of the matrices increases and as the matrices 
become more unstructured.  When all test matrices are considered, 
MMD produces orderings that require a total of 702 billion 
operations, whereas the orderings produced by our multilevel 
scheme require only 293 billion operations.  Thus, the entire 
ensemble of matrices can be factored roughly 2.4 times faster if 
ordered with our algorithm. 
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Figure 4. The speedup of graph partition by using the parallel 
algorithm. 

Even though these multilevel algorithms are quite fast compared 
with spectral methods, performing a multilevel partitioning in 
parallel is desirable for the following reasons.  With the recent 
development of highly parallel formulations of sparse Cholesky 
factorization algorithms, numeric factorization on parallel 



computers can take much less time than the ordering step running 
on a serial computer.  In the context of iterative methods, 
adaptive grid computations dynamically adjust the discretization 
of the physical domain.  Such adjustments change the grid and 
thus require repartitioning of the graph.  Being able to 
perform the partition in parallel is essential for reducing the 
overall run time of these types of applications.  Furthermore, 
the amount of memory on serial computers is not large enough to 
allow the partitioning of graphs corresponding to large problems 
that can now be solved on massively parallel computers and 
workstation clusters.  By performing graph partitioning in 
parallel, the algorithm can take advantage of the significantly 
higher amount of memory available in parallel computers. 

We have recently developed a parallel formulation of the 
multilevel graph partitioning algorithm.  Our parallel algorithm 
achieves a speedup of up to 56 on 128 processors for medium size 
problems, further reducing its already moderate serial run time. 
Figure 4 shows some of these results. 


